Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(4): 114108, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38615321

ABSTRACT

TRP channels are implicated in various diseases, but high structural similarity between them makes selective pharmacological modulation challenging. Here, we study the molecular mechanism underlying specific inhibition of the TRPM7 channel, which is essential for cancer cell proliferation, by the anticancer agent CCT128930 (CCT). Using cryo-EM, functional analysis, and MD simulations, we show that CCT binds to a vanilloid-like (VL) site, stabilizing TRPM7 in the closed non-conducting state. Similar to other allosteric inhibitors of TRPM7, NS8593 and VER155008, binding of CCT is accompanied by displacement of a lipid that resides in the VL site in the apo condition. Moreover, we demonstrate the principal role of several residues in the VL site enabling CCT to inhibit TRPM7 without impacting the homologous TRPM6 channel. Hence, our results uncover the central role of the VL site for the selective interaction of TRPM7 with small molecules that can be explored in future drug design.


Subject(s)
1-Naphthylamine/analogs & derivatives , Antineoplastic Agents , TRPM Cation Channels , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , HEK293 Cells , Molecular Dynamics Simulation , Binding Sites , Protein Binding , Cryoelectron Microscopy
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108424

ABSTRACT

Type 2 diabetes mellitus (DM2) is a widespread metabolic disorder that results in podocyte damage and diabetic nephropathy. Previous studies demonstrated that TRPC6 channels play a pivotal role in podocyte function and their dysregulation is associated with development of different kidney diseases including nephropathy. Here, using single channel patch clamp technique, we demonstrated that non-selective cationic TRPC6 channels are sensitive to the Ca2+ store depletion in human podocyte cell line Ab8/13 and in freshly isolated rat glomerular podocytes. Ca2+ imaging indicated the involvement of ORAI and sodium-calcium exchanger in Ca2+ entry induced upon store depletion. In male rats fed a high-fat diet combined with a low-dose streptozotocin injection, which leads to DM2 development, we observed the reduction of a store-operated Ca2+ entry (SOCE) in rat glomerular podocytes. This was accompanied by a reorganization of store-operated Ca2+ influx such that TRPC6 channels lost their sensitivity to Ca2+ store depletion and ORAI-mediated Ca2+ entry was suppressed in TRPC6-independent manner. Altogether our data provide new insights into the mechanism of SOCE organization in podocytes in the norm and in pathology, which should be taken into account when developing pharmacological treatment of the early stages of diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Podocytes , Humans , Rats , Male , Animals , TRPC6 Cation Channel/metabolism , Podocytes/metabolism , Calcium Channels/metabolism , Diabetic Nephropathies/metabolism , Calcium/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , TRPC Cation Channels/metabolism
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499137

ABSTRACT

Alzheimer's disease (AD) is the most common cause of age-related dementia. Neuronal calcium homeostasis impairment may contribute to AD. Here we demonstrated that voltage-gated calcium (VGC) entry and store-operated calcium (SOC) entry regulated by calcium sensors of intracellular calcium stores STIM proteins are affected in hippocampal neurons of the 5xFAD transgenic mouse model. We observed excessive SOC entry in 5xFAD mouse neurons, mediated by STIM1 and STIM2 proteins with increased STIM1 contribution. There were no significant changes in cytoplasmic calcium level, endoplasmic reticulum (ER) bulk calcium levels, or expression levels of STIM1 or STIM2 proteins. The potent inhibitor BTP-2 and the FDA-approved drug leflunomide reduced SOC entry in 5xFAD neurons. In turn, excessive voltage-gated calcium entry was sensitive to the inhibitor of L-type calcium channels nifedipine but not to the T-type channels inhibitor ML218. Interestingly, the depolarization-induced calcium entry mediated by VGC channels in 5xFAD neurons was dependent on STIM2 but not STIM1 protein in cells with replete Ca2+ stores. The result gives new evidence on the VGC channel modulation by STIM2. Overall, the data demonstrate the changes in calcium signaling of hippocampal neurons of the AD mouse model, which precede amyloid plaque accumulation or other signs of pathology manifestation.


Subject(s)
Alzheimer Disease , Calcium , Animals , Mice , Calcium/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism , Calcium Signaling/physiology , Calcium Channels, L-Type/metabolism , Disease Models, Animal
4.
Br J Pharmacol ; 179(12): 2953-2968, 2022 06.
Article in English | MEDLINE | ID: mdl-34904226

ABSTRACT

BACKGROUND AND PURPOSE: Inwardly rectifying K+ (Kir ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K+ handling and BP control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral Kir 4.1/Kir 5.1 heteromeric K+ channel affects epithelial sodium channel (ENaC)-mediated Na+ transport in the principal cells of cortical collecting duct (CCD). EXPERIMENTAL APPROACH: The effect of fluoxetine, amitriptyline and recently developed Kir inhibitor, VU0134992, on the activity of Kir 4.1, Kir 4.1/Kir 5.1 and ENaC were tested using electrophysiological approaches in CHO cells transfected with respective channel subunits, cultured polarized epithelial mCCDcl1 cells and freshly isolated rat and human CCD tubules. To test the effect of pharmacological Kir 4.1/Kir 5.1 inhibition on electrolyte homeostasis in vivo and corresponding changes in distal tubule transport, Dahl salt-sensitive rats were injected with amitriptyline (15 mg·kg-1 ·day-1 ) for 3 days. KEY RESULTS: We found that inhibition of Kir 4.1/Kir 5.1, but not the Kir 4.1 channel, depolarizes the cell membrane, induces the elevation of intracellular Ca2+ concentration and suppresses ENaC activity. Furthermore, we demonstrate that amitriptyline administration leads to a significant drop in plasma K+ level, triggering sodium excretion and diuresis. CONCLUSION AND IMPLICATIONS: The present data uncover a specific role of the Kir 4.1/Kir 5.1 channel in the modulation of ENaC activity and emphasize the potential for using Kir 4.1/Kir 5.1 inhibitors to regulate electrolyte homeostasis and BP.


Subject(s)
Kidney Tubules, Collecting , Potassium Channels, Inwardly Rectifying , Amitriptyline/metabolism , Amitriptyline/pharmacology , Animals , Cricetinae , Cricetulus , Electrolytes/metabolism , Electrolytes/pharmacology , Epithelial Sodium Channels/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/pharmacology , Rats , Rats, Inbred Dahl , Sodium/metabolism
5.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946319

ABSTRACT

Microdomains formed by proteins of endoplasmic reticulum and plasma membrane play a key role in store-operated Ca2+ entry (SOCE). Ca2+ release through inositol 1,4,5-trisphosphate receptor (IP3R) and subsequent Ca2+ store depletion activate STIM (stromal interaction molecules) proteins, sensors of intraluminal Ca2+, which, in turn, open the Orai channels in plasma membrane. Downstream to this process could be activated TRPC (transient receptor potential-canonical) calcium permeable channels. Using single channel patch-clamp technique we found that a local Ca2+ entry through TRPC1 channels activated endogenous Ca2+-activated chloride channels (CaCCs) with properties similar to Anoctamin6 (TMEM16F). Our data suggest that their outward rectification is based on the dependence from membrane potential of both the channel conductance and the channel activity: (1) The conductance of active CaCCs highly depends on the transmembrane potential (from 3 pS at negative potentials till 60 pS at positive potentials); (2) their activity (NPo) is enhanced with increasing Ca2+ concentration and/or transmembrane potential, conversely lowering of intracellular Ca2+ concentration reduced the open state dwell time; (3) CaCC amplitude is only slightly increased by intracellular Ca2+ concentration. Experiments with Ca2+ buffering by EGTA or BAPTA suggest close local arrangement of functional CaCCs and TRPC1 channels. It is supposed that Ca2+-activated chloride channels are involved in Ca2+ entry microdomains.


Subject(s)
Anoctamins/metabolism , Calcium/metabolism , Chloride Channels/metabolism , Phospholipid Transfer Proteins/metabolism , TRPC Cation Channels/metabolism , Cations, Divalent/metabolism , HEK293 Cells , Humans , Patch-Clamp Techniques
6.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922367

ABSTRACT

The actin cytoskeleton of podocytes plays a central role in the functioning of the filtration barrier in the kidney. Calcium entry into podocytes via TRPC6 (Transient Receptor Potential Canonical 6) channels leads to actin cytoskeleton rearrangement, thereby affecting the filtration barrier. We hypothesized that there is feedback from the cytoskeleton that modulates the activity of TRPC6 channels. Experiments using scanning ion-conductance microscopy demonstrated a change in migration properties in podocyte cell cultures treated with cytochalasin D, a pharmacological agent that disrupts the actin cytoskeleton. Cell-attached patch-clamp experiments revealed that cytochalasin D increases the activity of TRPC6 channels in CHO (Chinese Hamster Ovary) cells overexpressing the channel and in podocytes from freshly isolated glomeruli. Furthermore, it was previously reported that mutation in ACTN4, which encodes α-actinin-4, causes focal segmental glomerulosclerosis and solidifies the actin network in podocytes. Therefore, we tested whether α-actinin-4 regulates the activity of TRPC6 channels. We found that co-expression of mutant α-actinin-4 K255E with TRPC6 in CHO cells decreases TRPC6 channel activity. Therefore, our data demonstrate a direct interaction between the structure of the actin cytoskeleton and TRPC6 activity.


Subject(s)
Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Calcium/metabolism , Kidney Glomerulus/metabolism , Podocytes/metabolism , TRPC Cation Channels/metabolism , Animals , Kidney Glomerulus/cytology , Male , Podocytes/cytology , Rats , Rats, Wistar
7.
Diabetes ; 67(11): 2206-2212, 2018 11.
Article in English | MEDLINE | ID: mdl-30131395

ABSTRACT

Increased expression of adaptor protein p66Shc has been associated with progression of diabetic nephropathy. Afferent arteriolar dilation and glomerular hyperfiltration in diabetes are due to increased KATP channel availability and activity. Hyperglycemia was induced in Dahl salt-sensitive (SS) rats in a model of diabetes induced by streptozotocin (STZ). Renal injury was evaluated in SS rats and genetically modified SS rats either lacking p66Shc (p66Shc knockout [p66ShcKO]) or expressing p66Shc mutant (p66Shc-S36A). Afferent arteriolar diameter responses during STZ-induced hyperfiltration were determined by using the juxtamedullary nephron technique. Albuminuria and glomerular injury were mitigated in p66ShcKO and p66Shc-S36A rats with STZ-induced diabetes. SS rats with STZ-induced diabetes had significantly increased afferent arteriolar diameter, whereas p66ShcKO and p66Shc-S36A rats did not. SS rats with STZ-induced diabetes, but not p66ShcKO or p66Shc-S36A rats with STZ-induced diabetes, had an increased vasodilator response to the KATP channel activator pinacidil. Likewise, the KATP inhibitor glibenclamide resulted in a greater decrease in afferent arteriolar diameter in SS rats with STZ-induced diabetes than in STZ-treated SS p66ShcKO and p66Shc-S36A rats. Using patch-clamp electrophysiology, we demonstrated that p66ShcKO decreases KATP channel activity. These results indicate that inactivation of the adaptor protein p66Shc decreases afferent arteriolar KATP channel activity and decreases renal damage in diabetic SS rats.


Subject(s)
Arterioles/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , KATP Channels/metabolism , Kidney/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Arterioles/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/pathology , Kidney/pathology , Pinacidil/pharmacology , Rats , Rats, Inbred Dahl , Rats, Transgenic , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Vasodilation/drug effects , Vasodilator Agents/pharmacology
8.
Front Pharmacol ; 9: 696, 2018.
Article in English | MEDLINE | ID: mdl-30008670

ABSTRACT

Neurodegenerative pathologies are among the most serious and socially significant problems of modern medicine, along with cardiovascular and oncological diseases. Several attempts have been made to prevent neuronal death using novel drugs targeted to the cell calcium signaling machinery, but the lack of adequate models for screening markedly impairs the development of relevant drugs. A potential breakthrough in this field is offered by the models of hereditary neurodegenerative pathologies based on endogenous expression of mutant proteins in neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs). Here, we study specific features of store-operated calcium entry (SOCE) using an iPSCs-based model of Huntington's disease (HD) and analyze the pharmacological effects of a specific drug targeted to the calcium channels. We show that SOCE in gamma aminobutyric acid-ergic striatal medium spiny neurons (GABA MSNs) was mediated by currents through at least two different channel groups, ICRAC and ISOC. Both of these groups were upregulated in HD neurons compared with the wild-type neurons. Thapsigargin-induced intracellular calcium store depletion in GABA MSNs resulted in predominant activation of either ICRAC or ISOC. The potential anti-HD drug EVP4593, which was previously shown to have neuroprotective activity in different HD models, affected both ICRAC and ISOC.

9.
J Biol Chem ; 290(8): 4717-4727, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25533457

ABSTRACT

The endoplasmic reticulum calcium sensors stromal interaction molecules 1 and 2 (STIM1 and STIM2) are key modulators of store-operated calcium entry. Both these sensors play a major role in physiological functions in normal tissue and in pathology, but available data on native STIM2-regulated plasma membrane channels are scarce. Only a few studies have recorded STIM2-induced CRAC (calcium release-activated calcium) currents. On the other hand, many cell types display store-operated currents different from CRAC. The STIM1 protein regulates not only CRAC but also transient receptor potential canonical (TRPC) channels, but it has remained unclear whether STIM2 is capable of regulating store-operated non-CRAC channels. Here we present for the first time experimental evidence for the existence of endogenous non-CRAC STIM2-regulated channels. As shown in single-channel patch clamp experiments on HEK293 cells, selective activation of native STIM2 proteins or STIM2 overexpression results in store-operated activation of Imin channels, whereas STIM1 activation blocks this process. Changes in the ratio between active STIM2 and STIM1 proteins can switch the regulation of Imin channels between store-operated and store-independent modes. We have previously characterized electrophysiological properties of different Ca(2+) influx channels coexisting in HEK293 cells. The results of this study show that STIM1 and STIM2 differ in the ability to activate these store-operated channels; Imin channels are regulated by STIM2, TRPC3-containing INS channels are induced by STIM1, and TRPC1-composed Imax channels are activated by both STIM1 and STIM2. These new data about cross-talk between STIM1 and STIM2 and their different roles in store-operated channel activation are indicative of an additional level in the regulation of store-operated calcium entry pathways.


Subject(s)
Calcium Signaling/physiology , Cell Adhesion Molecules/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , TRPC Cation Channels/metabolism , Calcium/metabolism , Cell Adhesion Molecules/genetics , HEK293 Cells , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2 , TRPC Cation Channels/genetics
10.
Biochimie ; 95(2): 347-53, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23079337

ABSTRACT

TRPC1 is a major component of store-operated calcium entry in many cell types. In our previous studies, three types of endogenous store-operated calcium channels have been described in HEK293 cells, but it remained unknown which of these channels are composed of TRPC1 proteins. Here, this issue has been addressed by performing single-channel analysis in HEK293 cells transfected with anti-TRPC1 siRNA (siTPRC1) or a TPRC1-encoding plasmid. The results show that thapsigargin-or agonist-induced calcium influx is significantly attenuated in siTRPC1-transfected HEK293 cells. TRPC1 knockdown by siRNA results in the disappearance of store-operated I(max) channels, while the properties of I(min) and I(NS) channels are unaffected. In HEK293 cells with overexpressed TRPC1 protein, the unitary current-voltage relationship of exogenous TRPC1 channels is almost linear, with a slope conductance of about 17 pS. The extrapolated reversal potential of expressed TRPC1 channels is +30 mV. Therefore, the main electrophysiological and regulatory properties of expressed TRPC1 and native I(max) channels are identical. Moreover, TRPC1 overexpression in HEK293 cells results in an increased number of store-operated I(max) channels. All these data allow us to conclude that TRPC1 protein forms native store-operated I(max) channels but is not an essential subunit for other store-operated channel types in HEK293 cells.


Subject(s)
Calcium/metabolism , Membrane Potentials/drug effects , TRPC Cation Channels/metabolism , Gene Expression , HEK293 Cells , Humans , Ion Transport/drug effects , Patch-Clamp Techniques , Plasmids , RNA, Small Interfering/genetics , TRPC Cation Channels/agonists , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , Thapsigargin/pharmacology , Transfection , Uridine Triphosphate/pharmacology
11.
Cell Calcium ; 48(4): 209-14, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20926133

ABSTRACT

Homers are adapter proteins that play a significant role in the organization of calcium signaling protein complexes. Previous functional studies linked Homer proteins to calcium influx in nonexcitable cells. These studies utilized calcium imaging or whole-cell current recordings. Because of limited resolution of these methods, an identity of Homer-modulated ion channels remained unclear. There are several types of plasma membrane calcium influx channels in A431 cells. In the present study, we demonstrated that Homer dissociation resulted in specific activation of I(min) channels but not of I(max) channels in inside-out patches taken from A431 cells. In contrast, inositol 1,4,5-trisphosphate activated both I(min) and I(max) channels in inside-out patches. Short (1a) and long (1c) forms of Homer had different effects on I(min) channel activity. Homer 1a but not Homer 1c activated I(min) in the patches. This study indicates that I(min) channels are specifically regulated by Homer proteins in A431 cells.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism , Amino Acid Sequence , Calcium Channels/physiology , Calcium Signaling/physiology , Carrier Proteins/genetics , Cell Line, Tumor , Electrophysiological Phenomena , Homer Scaffolding Proteins , Humans , Inositol 1,4,5-Trisphosphate/pharmacology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Patch-Clamp Techniques , Peptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...